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Abstract. We construct a genetalized spectral decomposition of the Frobenius-Perron
operator of the general B-adic Renyi map using a general iterative operator method
applicable in principle to any mixing dynamical system. We also explicitly define
appropriate rigged Hilbert spaces, which provide mathematical meaning to the formally
obtained spectral decomposition. The explicit construction of the eigenvalues and
eigenvectors allows us to show that the essential spectral radius of the Frobenius—
Perron operator decreases as the smoothness of the domain increases. The reason for
the change of the spectrum from the unit disk to isolated eigeavalues, is the existence of
coherent states of the Frobenius-Perron operator, which are not infinitely differentiable.

1. Introduction

Complex spectral decompositions for large Poincaré non-integrable dynamical systems
have been recently constructed by the Brussels-Austin groups [1,2]. The resonances
appear as complex eigenvalues of the evolution generator. The solution algorithm
of the eigenvalue problem defines an extension of the operator beyond the Hilbert
space. The extension acquires meaning in a suitable [3] rigged Hilbert space [4].
Eigenfunctions of the Frobenius-Perron operator [5] of the baker [6] and the
dyadic Renyi map [7] have also been recently obtained by Hasegawa and Saphir [6].
Gaspard [8] also constructed eigenfunctions for the general Renyi map through
Euler’s summation formula. The corresponding eigenvalues are just the Pollicott-
Ruelle resonances [9-18]. The Pollicott-Ruelle resonances of a dynamical system are
the complex poles of the meromorphic extension of the power spectrum (the Fourier
transform of the correlation function). It is straightforward to see [19] that these poles
are the logarithms of complex eigenvalues of the Frobenius-Perron operator of the
dynamical system. The existence of Pollicott—Ruelle resonances has so far been shown
only for axiom-A systems and the actual construction depends upon the possibility
to construct Markov partitions [12]. For non-axiom-A systems, ‘numerical studies
are often the only accessible tool of investigation’ [20]. The resonances of ‘chaotic’
systems may also be calculated if the unstable periodic orbits are known [21-25]. In
any case there is no systematic method to construct the associated eigenfunctions
and thus obtain a spectral decomposition of the Frobenius-Perron operator. Such
a decomposition effectively answers directly all questions [11] concerning the decay
properties (exponential or not) of the correlation functions, as well as the analyticity
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74 I Antoniou and S Tasaki

properties of the power spectra. Furthermore, the spectral decomposition of the
Frobenius-Perron operator amounts to an effective solution of the prediction problem
in terms of densities within the test function space.

In this paper, we construct a generalized spectral decomposition of the Frobenius-
Perron operator of the S-adic Renyi map using a general algorithmic method [26].
This is only one example illustrating the proposed method which we expect
to be applicable to any mixing dynamical system, as it is based on iterative
solutions of operator equations. The origin of the method is the subdynamics
decomposition of large Poincaré non-integrable dynamical systems {1, 2, 27-29]. We
also explicitly define (section 4) suitable rigged Hilbert space structures, which
provide a mathematical meaning to the formally obtained spectral decomposition.
Non-polynomial eigenfunctions of the Frobenius—Perron operator are discussed in
section 5. These eigenfunctions may also be seen as coherent states of the Frobenius—
Perron operator. In section 6, we show how the spectral properties of the Frobenius—
Perron operator of the F-adic Renyi maps depend upon the smoothness of the
domain. The spectrum of the Frobenius-Perron operator changes from the whole
unit disk to the isolated eigenvalues present in the spectral decomposition because
the essential spectral radius of the Frobenius-Perron operator decreases as the
smoothness of the domain increases.

The (-adic Renyi map S on the interval [0, 1) is the multiplication, modulo I, by
the integer 8 > 2:

S:[0,1)=[01) : zm— Sr=gF8r (mod1). ¢y

The Renyi maps arise in the B-adic digital representation of any number x € [0, 1).

The forward iterations of the Renyi map define a cascade which preserves the
Lebesgue measure of {0,1). Renyi showed [30] that the Lebesgue measure is the
only invariant measure, which means that the dynamical system is ergodic. Morcover,
Rokhlin showed that the Renyi systems are highly unstable exact dynamical systems
[31, 5], with positive Kolmogorov-Sinai entropy. Nowadays Renyi maps are considered
to be the simplest models for ‘chaos’.

The probability densities p(«) evolve according to the Frobenius-Perron operator
U [5]:

_ ! p 87! z4r
Up(e) = E:IEWEﬂMy%=52;p( +1). @

¥,8(y)=

The Frobenius-Perron operator is partial isometry on the Hilbert space L? of square-
integrable densities over the unit interval. The Frobenius-Perron operator is the

adjoint of the isometric Koopman operator U f:

Ulp(z) = p(Sx). )

2. The spectral decomposition algorithm

The systematic method we use to obtain spectral decompositions of linear operators
is a continuation of previous work done by the Brussels-Austin groups. The key
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idea is the construction of an intermediate operator © which is intertwined with the
operator U

UN=006 o U=Qeal. )

The intertwining relation (4) was obtained by Prigogine et al [27] and George [28].
Recently, Petrosky and Prigogine [2] pointed out that the intertwining relation can
be used for the construction of the spectral decomposition of the Liouville operator.
The method as reformulated by us [26] may also be considered as a generalization of
the partitioning technique of matrices and of the intertwining wave operator method
of scattering theory.

The intermediate operator © is decomposable with respect to a complete family
of projectors P, constructed from a suitably chosen biorthonormal system |, ), (&, |-
In the decomposition of the operator U into the diagonal U and the non-diagonal
part Uy,

UU = Z(Gn!Ul(pn)h"nK‘Eﬂi = ZWVPV
n v

)
Ul = z (ﬁm[UI(pn)ltpmxan[

mgEn

where w,, labels the identical diagonal elements {Z, |Ulw, ) (degenerate eigenvalues)
of U, and P, is the w,-eigenprojector (» = n if there is no degeneracy). After
constructing the spectral decomposition of ©, the intertwining operator £} provides
the spectral decomposition of the operator U.

The intermediate operator © as well as the similarity operator §2 are obtained [26]
from the creation and destruction operators C, and D :

@=>(P,UP,+ P,UC,P,) ©)
Qs> (P +C,) (7a)
Q=5 (P, +D,C) (P +D,). (7b)

v

The creation and destruction operators €, and D, are constructed iteratively as
solutions of the nonlinear equations for the components #,C, and D, P,, (v # u}.

[UU,P#CV]_ = (P#Ct, - P#)Ul(Py -+ Cv) (8a)

[UU’DVP#]-_=(PV+DV)U|(PM_DVPM) (Sb)
or

(w, —w,}P,C, = (PHCU— PH)UI(PV-I-CU) (9a)

(w, ~w,)D,P, = (P, +D,)U(P,-D,P,). (%)
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If there is resonance we use the time-ordering boundary condition or regularization
rule [26]). However, this case does not arise here, so the operators C, and D, are
obtained from the equations

1

P,C, = ——— (P,C, - P)U(P,+C,) (10a)
7 »
1
D,P, = m(ﬂ,+ D,)U,(P,-D,P,). (10b)

Let us remark that (8)-(10) are a nonlinear generalization of the Lippmann-
Schwinger equations for the Moller wave operators of scattering and may provide
non-unitary intertwining operators even if the scattering asymptotic condition [32]
between U, and U fails.

The algorithm for the construction of spectral decomposition of the operator U
is the following:

(i) Choose a convenient biorthonormal system |, ), (#,| and decompose the
operator U into the diagonal part Uy and the non-diagonal part or perturbation U,
(equation (5)).

(ii) Construct the creation and destruction operators C, and D, iteratively as
solutions of the equations (10), starting with CE)] = DE?I =0

(iii) Construct the intermediate operator © from (6) and find the spectral
decomposition of © by solving the eigenvalue problem in each P, subspace. As
© is not Hermitian, we expect that © may have a generalized Jordan decomposition
into a diagonal part and a weighted shift [26].

(iv) Obtain the spectral decomposition of U from the spectral decomposition of
© using the similarity 2 (equations (4) and (7)).

3. Spectral decomposition of the Frobenius-Perron operator of the Renyi map

We shall construct a spectral decomposition of the Frobenius—Perron operator (2)
following the algorithm of the previous section.

(i) As the monomials =™ are eigenvectors of the dilatation operator V f(z) =
f(Bz), we choose

_ (=1 8(z)

ea) =2 and (B N

(11)

as the initial biorthonormal system. This system gives the Taylor expansion of analytic
functions

n.:

X f(n)ig
fay =3 L@ on,
n=0
The biorthonormality is straightforward:

1 —1ym gim)
(gmltpn> = /U dr(—l—)——ﬂ%l——@')-zn = 6-n,m . (12)
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The matrix elements of the Frobenius-Perron operator with respect to the
biorthonormal system |¢,,} and {Z, | are

7 for m=n
U= (Bl Ulpn)={ 0 for m>n
1 n{n— 1) (n_m'{-l)zk" m for m<n.

ﬂn-{-l

Indeed,

e —P5(C DR 5 FASEY

The Frobenius-Perron operator is represented, therefore, as an upper triangular
matrix with respect to the biorthonormal system |, ) and (&, |:

=0

LD I PNIAES D LA LS DU ANPRIEN 13)

m<n

with P, = |¢, }{@,| = P, as there is no degeneracy in U,

(ii) It is a general property [26] of (upper) triangular decompositions that
the corresponding creation and destruction operators C, and D, are also upper
triangular operators. Furthermore, the nonlinear operator equations (10) for C,
and D, become linear and they have the form of Lippmann-Schwinger equations of
scattering [32]:

1
= — P
Pmcn wn-memUl( 'n.+cn) (14{0
D, Py = ———— (P + D,)Ui Py (14)
In our case, of course, w, = 1/6", n =0,1,2,.... The triangular form of C, and

D, follows from (10) by induction. For the operator C,,

wm il

is upper triangular without diagonal parts because [; is also upper triangular.
Suppose that P, cl i > 1 is upper triangular without diagonal parts. Then

1
PmC-u['zk+1] = m(Pmch] - Pm.)Ul(Pn + ch])

™m

is also upper triangular without diagonal parts because it is the product of three
upper triangular operators without diagonal parts.
The proof for the operator D, is the same.
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The simplification (14) follows immediately from the lemma
P,Uy(Py +Cp) = (P + D,)Uy P, = 0. (15)
Lemma (15) follows from the triangular property of U, and C,:

PnUl(Pu+Cn) = PnUan +’PnUICn =0+anL1Pn‘Cn =0

because P, U F,, =0forn>n'and P,,C, =0for n' > n.
The proof for D, is the same.
From (14) we obtain (see appendix) the matrix elements of C, and D, :

1By for m <
" _— m<n
Crun = (BrlClipy) = { mi(n — m)! (160)
¢ form>n
m! f
~ —_— or m >
Dy = (B0l Dy ) = { al(m — n + 1)) TR e
0 form<n.

B,,_, are the Bernoulli numbers, defined by the generating function

=B
Z;" z" (17

(iii) For triangular operators the intermediate operator © is identical with the
diagonal part of U, U, [26], namely

0=0,=3 & Frheal{@al. (18)
n=0
This follows straightforwardly from (6} and the lemma (15).
(iv) For triangular operators, the similarity operators  and Q! have also a
simple form [26]:
Q=3 (P, +Cy) (194

Q'=3 (P, +D,). (19b)

n

These formulae follow from (7) and the lemma
D, C, =0. (20)
This lemma follows from triangular property of C, and D,

D,C,=Y P,D,P,P,C,P, =0
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because P, D, P, =0forn>n'and P,.C, F, =0 for n’ > n.
The right and left eigenvectors of U are obtained from the eigenvectors |, ),
{(@,| of © and the operators Q, Q1. The right eigenvectors of U are

n-1

!
Y xmm%-m) = |Bp(z}}.

m=0

Qen) = @) + Y Crnnlom) = |2

B,(z) is the n-degree Bernoulli polynomial defined by the generating function
33, §9]

zei"l Zo Bn(lr) (21)

Formula (21) gives the relation between the Bernoulli polynomials and Bernoulli
numbers: B, (0) = B
The left eigenvectors of U are

(Eree , S Comene

(Bal7! = (Zal + Z Dy (Bl =

e nl{m—mn + 1)!
( 1)i+n6(l+n)(m ( 1)n ( 1)15(1+n)(m)
= (my P = (S [ e g S
— (_l)n ! te(n !
—<—-—;;1-—-/U de' 60Nz — ")
{1 n=20

<_____( D" (e~ 1) - 6‘“-%)}‘ n=1L2...

E(Bn|.

The left eigenvectors {5, | are meaningful as antilinear functionals acting on analytic
test functions only.
The spectral decomposition of U is therefore

U= Zﬁnm% (Zal07t = Zﬁ—niB
(22)

1 0 inel)f1y . Aln—1}
Up(a:):/l;dx'p(x')-l-zp (liwf D5 (2.

n=1

The orthonormality of the system |B,} and (B,| follows immediately, while the
completeness relation is just the Euler—MacLaurin summation formula for the
Bernoulli polynomials [33, §9]

1 9 Hn-U(1) = pln-1}
o) = [aoan+ Y SO ). @

.

n=1
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The fact that the Bernoulli polynomials are eigenfunctions of the Frobenius—-
Perron operator of the Renyi map also follows immediately from the well known but
not frequently quoted formula {34, p 284, a8 an exercise]

8-1
Bn(ﬁ-'r) =Jﬁn_IZ:Bﬂ (I’-{- %) . (24)
r=0

This fact was ‘rediscovered’ by Hasegawa and Saphir [6,7] and by Gaspard [8].
They also point out that the eigenvalues corresponding to the Bernoulli polynomials
coincide with the Pollicott-Ruelle resonances.

The Bernoulli polynomials are the only polynomial eigenfunctions as any
polynomial can be uniquely expressed as a linear combination of the Bernoulli
polynomials.

4. The meaning of the spectral decomposition of the Frobenius-Perron operator

The spectral decomposition (22) of U, constructed previously, has no meaning in the
Hilbert space L? as the derivatives §(*)(z) of Dirac’s delta function appear as left
eigenvectors of U. The left eigenvectors [35, p 29] of an operator U are cigenvectors

of its adjoint U t corresponding to the complex conjugate eigenvalue

{(F1U = z{f]| (25)
Wil = (="

and
ul|fy = =*|7). (26)

Following the standard convention of Dirac [35], | } denotes linear functionals, while
{ | denotes antilinear functionals:

(glerdr + €292) = ergldr} + cx{gley) (e191 + €2@209) = ci{d1]g} + (2|9}

Furthermore, as the Renyi transformations are exact [31,5] dynamical systems,
the Koopman operator Ut is a unilateral shift of infinite multiplicity. Unilateral
shifts [36,37], called semi-unitary operators by Rokhlin [31], do not admit a spectral
decomposition in Hilbert space, as they cannot be decomposed in any way at all. In
fact, the undecomposability is a necessary and sufficient condition for an isometry to
be a unilateral shift {37, ¢h 7, p 110}.

A natural way to give meaning to formal eigenvectors of operators which do not
admit eigenvectors in Hilbert space, like the Koopman operator Ut, is to extend
the operator to a suitable rigged Hilbert space, eg. @ C L2 C of [38, ch I]. ot
is the space of continuous linear functionals on the properly chosen test function
space ®. In this way, the spectral decomposition (22) can be understood as a natural
generalization of the Gelfand [38, ch I, 35, ch IV]-Maurin [40] theory of generalized
spectral decompositions of self-adjoint operators with continuous spectrum.
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The extension of Ut to ®1 is defined in the standard way [38, 1.4]:

(Ut f18) = (FlU¢) @7)

for all test functions ¢ in @.

It is therefore necessary that the test function space is stable with respect to the
Frobenius-Perron operator U, namely Ud C &.

A suitable test function space is the subspace P of polynomials. The space P
is dense [41, p 21] in L? and a nuclear [ F-space [42, ch 51] and thus, compiete
and barrelled. Moreover, the space P is stable with respect to the Frobenius-Perron
operator U and U is continuous with respect to the topology of P, because U
preserves the degree of polynomials,

From the previous discussion the adjoint U ¥ can be continucusly extended to the
topological dual Pt. This is therefore an appropriate rigged Hilbert space to give
meaning to the spectral decomposition of U.

One may of course look for a tighter rigging. The corresponding test functions ¢
should at least provide a domain for the Euler-MacLaurin summation formula (23).
The requirement of absolutely convergence of the series (23) means that

X | hin=-1}
2. é"‘#Bn(a’) < oo (y=0,1}. (28)
n=1 :

We shall show that the condition (28) implies that the test functions ¢ should be
restrictions on [0,1) of entire functions of exponential type ¢ with 0 < ¢ < 27. The
space £, of entire functions of exponential type ¢ > 0 consists of the entire functions
¢(z} such that

|o(2)] < Kedtl Yz e C forsome K > 0.

Indeed, Cauchy’s criterion for the convergence of the positive series gives
1/n
Hmsup[%]q&‘”“l)(y)l <1 (y=0,1).

n—00

Then, with the aid of the inequality

limsup e, b, > liminf o, limsup b,
n—03

n—og T, = OO

for any positive sequences a,, b, and the property of the Bernoulli polynomials

33, §9(1)]

lim inf [M] v = L

n—od n ! 211'
we obtain

limsup[|¢"~D(0}] /" < 2r. (29)

Te=—00
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As shown by Boas [43, ch 2], condition (29) is necessary and sufficient for the function
@(z) to be an entire function of exponential type ¢ with 0 < ¢ < 27.

The fact that any entire function of exponential type less than 2« has a convergent
Euler-MacLaurin expansion (23) is mentioned by Boas and Buck [33, §9]. It is clear
that we have therefore the whole family £,, ¢ < ¢ < 27 of test function spaces. Each
space £, is a Banach space with norm [42, ch 22]

lloll. = sup joo(z)|e ! .
zZEC

The norm topology of each £, is stronger than the Hilbert space topology [42, ch 22},
Each space £, is dense in the Hilbert space L? as £, includes the polynomial space P.
Each test space £, is stable under the Frobenius-Perron operator U. Indeed, for
every function ¢(z) in &,
- J+(557)

qu(m-w)
Sl (5Ee) (5]

r—O

The last inequality implies that U ¢ is of exponential type ¢/3. The stability of each
£, follows from the nesting property [42, ch 22} £ C £, if ¢ < ¢/. The nuclear space
P and the family of Banach spaces £, form reasonable test function spaces providing
increasingly tighter riggings, which give meaning to the spectral decomposition (22).

As discussed in the beginning of this section, the Koopman operator U tis
a unilateral shift. As unilateral shifts are not decomposable, they cannot have
eigenfunctions in the Hilbert space. However, the extended Koopman operator has
generalized eigenvectors

Welr)| =

ul|B,) = 1B, (30)

1
A=
and generalized spectral decomposition

o3

ut=%" ﬁn|B W Bl 31)

a=0

This is, to our knowledge, the first example of non-normal operators which do not
admit a spectral decomposition in the Hilbert space but possess a generalized spectral
decomposition.

5. Non-polynomial eigenfunctions of the Frobenius—Perron operator

It is straightforward to see that the Frobenius-Perron operator U has also the non-
polynomial eigenfunctions:

oo

U yi(z) = z¢93(x) Yilx)= Z hgi(z) s€Z, (32)

=
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where Z_ . ={sc Z:s/3 ¢ Z} and
ga{z) = exp(2misfa) n=012,.... (33)

It is also straightforward to see that the functions {gZ(x)} satisfy the property

3 >1
Ugi() = {g"“(m) E: - O)) 69

Equation (34) means that the operator U is the adjoint unilateral shift in the
orthogonal complement of constant functions L2 & C and that the set {gg(z)},ez,
is a basis of the wandering generating subspace [36] of the shift. As the set {g3(x)}
is essentially the Fourier basis of L% ¢, it forms an orthonormal basis of the space
L’sc.

The eigenfunctions 3(x) have the following properties:

(i) Although the family {+2(z)} is an overcomplete nonorthonormal set in L2&C,
for any eigenvalue z with |z| < 1, each subfamily {1}(x)},.z, is an orthonormal
basis for the z-eigenspace. In fact, if ¥, (z) = Y.,cz Tonepcs gi(z) € L% is an
eigenfunction of U/ with eigenvalue z,

U, (z) = 29,(z)
equation (34) gives
Cpyy = 2C5 == 27¢p
and thus
wi()= 3 Y 2" gi(a)= ) cjwil).
$€Z, n=0 s€Z.

(if) The eigenfunctions 2(xz) are m-times continuously differentiable on (0,1)
for a non-negative integer m satisfying

_]:'ﬁ'z|>m2_l—1:éf~|—1. 35)
Indeed, the term-by-term vth derivative of (32) is

o0 dv ©0

Zu o5 0n(2) = (2mis)” nzﬂ(zﬁ")“ galz). (36)

Let 0 < v < m; then because of |g2(x)| = 1 and [z|8¥ < |2|6™ < 1 by (35), the
series (36) converges absolutely and uniformly on [0,1]. Thus, ¥i(z) is m-times
continuously differentiable and its vth derivative, v = 1,2,...m, is given by (36).

(iii) Moreover, the mth derivative 1™} z) of the eigenfunction ¥i(x) is Holder
continuous of exponent a: 0 < a < —In(|z8™|)/ In 3. The proof follows from the
inequality

[exp(iz) ~ 1| < 21~%|2|® (zeR0<a<1). (37



84 I Antoniou and S Tasaki

We have
lgn (=) — gn(v)l = |exp(2mis "™ (= — y)) — 1| < 2(w[s])*B*" |x — y[* .
Therefore, for x # y and |z|g™m+e < |,

[ws™ (@) — v ™ ()| e e 195(2) = g5 ()]
Py < (2nfs)) ggkm e T

<2 (m|smre  C[1218T 0T < oo
n=0
(ivy One can express the Bernoulli polynomials B, (z) in terms of the
eigenfunctions !(x) by rearranging the Fourier expansions of the Bernoulli
polynomials [34, p 284}
_ B.(z) _ S - /
By(z) =1 - ..sez; mwl,ﬁn(m (n=1,2,...). (38)

(v) The eigenfunctions () for 1 > |z] > 1/8 can be expressed in terms of the
Weierstrass functions as follows:

Wi(w) =Y 2" cos(2nfhsz) +i ) 2" sin(2r " sz) . (39)
n=0 n=0

Such functions are called complex Weierstrass functions by Mandelbrot [44, p 388].
The fact that the Weierstrass functions appear as eigenfunctions of the Frobenius-
Perron operator has also been noticed by Hata [45]. A pictorial representation of
these functions is presented in figures 1 and 2.

These curves are fractal sets. Indeed, by using the Besicovitch-Ursell
inequality [46], it is easy to show that the Hausdorff dimension D, of the graphs
of Re¢i(2) and Im ¢(x) satisfies
In|z|
hg’

(vi) Let us remark before closing this section that the behaviour of the
eigenfunctions :(z) of the Frobenius-Perron coperator U resembles the behaviour
of the coherent states. <Coherent states are eigenfunctions of the annihilation
operator [47], which is an unbounded adjoint weighted shift [36]. This is, in fact,
a special case of a general construction of coherent states for shift operators [48].

1< D, <2+ (40)

Figure 1. The graph of y = Rew,b}/z(x) in the case of 8 = 2.
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Figure 2. The graph of y = Re "”%/3(’:) in the case of =2

6. Domain dependence of the spectrum of the Frobenius—Perron operator

As the Frobenius—Perron operator U is the adjoint shift, the spectrum of U on the
Hilbert space L2 & C is the unit disk [36, Problem 82]. How does the spectrum of
U change to isolated eigenvalues in the domain P or £, 0 < ¢ < 27?7 In order
to answer this question, we shall study the spectral radii of the restrictions of U in
the intermediate dense domains C'™< of all m-times continuously differentiable
functions on [0,1] whose mth derivative is Hoélder-continuous with exponent o,
0 < o<1 Itis obvious that P € £, C £, € C™= ¢ C™ ¢ L? with
mta<m +a and c <.

The difference of the Frobenius-Perron operator U from the spectral
decomposition (22) is expressed by the operators

1 mooi{n-1} _ 4ln-=1) t]
Uim(2) = Ua(a) - [ aa'oqe) - 3 SIoi2 O g, (a)

m=12,.... -4y

Each operator U, is well-defined on C™* m = 1,2,... and one can show that:
(i} The range of Uy, is the subspace CJ*'* of all m-times continuously
differentiable functions on [0,1] whose mth derivative is Holder-continuous with
exponent 0 < « < 1 and all derivatives are periodic, ie. @)(0) = ¢¥}1)
(v=0,...,m-1).

(i) The operator Up,) has spectrum in the closed disk |z| < 1/8™+* with
associated eigenfunctions the non-polynomial eigenfunctions ¥3(z) given by (32).
This means that the spectral radius of the opemtor Up,; becomes smaller as the
smoothness (m + «) increases. When m — oo, the spectral radius approaches
zero. This implies that, as m — oo, the Frobenius-Perron operator U is ‘effectively’
approximated by the spectral decomposition (22) which is associated with isolated
eigenvalues and analytic functions.

Before going to the proof, we remind the reader that the spaces C™* and C7*<

are Banach spaces with norms

n=1

ellma = N + [16™,, (42)

j=0
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where ||¢4)[o, = sup, g, iy [44)()] the supremum norm and

|¢(™N(z) — (m™(y)]
le — ylo '

6™, = sup{ z,y€[0,1],z # y} . (43)

the minimum o«-Hélder constant.

Proof of (i) and (if). The periodicity condition (Up,¢)™ (1) = (Up,e)*(0)
(v=0,...,m-1) for (i) follows straightforwardly for alI q& g g™

Before going to the proof of (if) for Up,;, m = 1,2,..., we study the operator
Uy defined by

1
Ugd(z) = Ud(z) - fu dz’ $(z") (44

on the space C7»* of periodic functions.
The spectral radius of Uy is

R(Uy) = oogs - )

Proof of formula (45). We first observe that the spectral radius R(Up) is bounded
from below by 1/8™+%, as for any o within the open disk |z] < 1/8™+* the
eigenfunction v3(«) is in the space C*+*. We show also that R(Up;) < 1/8™*< by
using the well-known formula for the spectral radius [36, Problem 88]

R(Uy) = i Uy /™ (46)
Since we have

||UE[;1¢“m,a -

1l = S8 0T e [.Z“(Ulw<")‘“*lw + U™l

¢#0 “¢’||m @

we should estimate the norms ||(Ugé))|le, § = 0,1,...m, and [[(Uf#)™i,.

In order to estimate the norms, we need the following lemma:

(iii) For all o-Holder-continuous functions g(z), Upg(x) is also o-Holder-
continuous (stability of the o-Holder-continuous funct:ons under Upy) and the
following inequalities hold:

/ dxe-ZRInmg(m) < ZQI.[pg:[[l;[a (47)
Wiyl < 1ele (48)
1ol < 18l @)

Proof of lemma (iii}. (i) From the formula [41, p 24]:

! —2ring — 1 : =27ing 1
’/0 dee™4"MT g(p) = :2-/0 doe? {9(@ “g(:ﬂ"{‘ E)} (50
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and the o-Holder continuity |g{z) — g(y)i < llgll.lz — y|®, we obtain, using (47),

_MHalla
<3, selotor-o(e+ 7)< e
(ii) Inequality (48) as well as the stability of the a-Holder-continuous functions follow
from
o(55) (5l s
8 8
(iif) Since f, dz'g(z') = 1/8 Y52 [} dyg(y/B + /B), we have
+
Uigo(a)| < 3 Z[ Jo(235) - o(15)
1 2=
a llglia
d
; Ge / yle —y|* <

which implies [[Uggllo < [lgllo /8%

‘/ dme—z:vrm:rg(m)

llgllq Ty

|Ugo(=) - Uya(v)| < ﬁZ

r=0

Estimation of ||(Ug™¢)!™!|l,. Let é(e) € Cci™); then f)ded!(x) = (1) -
¢(0) = 0 and we have

d 1..4d 1
EB‘U[U]¢(T)=EU£() ﬁU[U] z).

Similarly, as ¢*(1) = ¢*2(0) 0 < v < m —1),

S U (@) = Uy 6 ™(a) 1)

ﬁmn
Since ¢{™)(z) is a-Holder-continuous, lemma (48) gives

" 1 _—_ 1 1 n—1 s(m
Uy &)™, = gmn U™ ™[ < WE;HU[U] Lotm||,

<< (e ) 16 52)

Estimation of [|(U[U]"¢)("‘)|[m. Inequalities (48), (49) of lemma and (51) give

U™ ¢ J”ooSﬁ == U™ T ™,

raym = —
”(U{U] ¢') ”no mn o

5
<< (g ) 16 &




83 I Antoniou and S Tasaki

Estimation of ]|(U[U]”'qb)(")|[m (v=0,1,...m~1}). The function ¢{z} can be
expanded into a Fourier series

$(x) = ] d o=+ T3 eloi(x) (54)
22, k=0

where cj, is the Fourier coefficient

1 1
o = /u dz'gi* (x')(a') = fu dz' exp(=2misBre)o(z) . (55)
Thus, from (3.4), we obtain
Ug"#(z)= Y D cigiala)= 3 ch+ngk(m) (56)
$€EZ, k=n SEZ, k=l
which leads to
(U™ U < 3 S 2nlsl8) |ehynl - 37
sEZp k=0

As ¢(z) is m-times continuously differentiable and &/*}(1) = ¢*)(0) (0 < v <
m — 1), we obtain

H 1 " : ! : n ! m '
Iekenl = (1‘2?1.5@71) Uu dz’ exp(~2ris @7 2! ™) (')

{111) m-a n
<l (1 1 .
2e+1(2m)™ \ |s]8 ot
where the inequality (48) of lemma and the fact that ¢{™) is o-Holder-continuous
have been used. Thus, since m+ o —v > 1 for 0 < v < m — 1, we obtain

n sy () ”(nb{m)”a ( 1 )1’1 1 = 1 ¢
”(U[U] QS) ”°° S 2a+1(2ﬂ-)m—u ﬁm-l-o: Z |35m+a—v A,Zzu ﬁm{—a-—u

£,
16y C(mta-v)/ 1 \"
= 2&(27;-)111—»' 1— ,Gu—rx-m (ﬁ"’”‘“) (59)

where ¢(8) = 3.2, 1/n? is Riemann’s zeta function.
By combining (54}, (55) and {59), we have

n n v n m { =] "b Imaﬂf
1Ug" @llm,a = Z”(U[U] &) MNloo + 1Ty ) ™|l Mgf(mJL] <M gn(lm-!—a)
(60)

where M is a positive constant depending only on m and o

m~1
» 1 {(m+a-v)
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Thus we have

U #llm M
Uil .o = su - .
NV m, ¢¢% Nélme  — Brim¥a)

From the previous estimations and formula (46) we obtain the desired upper bound
for the spectral radius

11
ﬁm+a_§m'

— 1 n 1/7}, A 1/1‘1
R(Uy) = lim ||Upg"|lp, " < lim M
We can now prove that the spectral radius of Uy, is also

1
As in the case of Uy, the spectral radivs R(U[,,) i bounded by 1/8™** from

below, The argument 15 the same as before with the observation that

sHn-1) 1 (n i) 0
(Uppm = Upg )i () = pr (i! T ( )Bn(x) =0. (63)

As in the case of Uy, we show that R(U,,)) < 1/8™*=.

Estimation of ||Upp,)" @l o Because the range of Uy, s C7* and Up,y = Uy
on O+, we can apply (60):

HUpmll
n - n—1 o mj*ilm,o
11" Bl = W™ Vpmy Bl 0 € MB™ 005
e |,
< Mg ¥ “U[m}“m.a ﬁn(m-{—:) :

Therefore

1 _ 1
gmte - gmta "

R(U{m]) = nli_mw ”U[mln“m,alfn S nlqi_‘l'ﬂm(1‘«5{.61%-*-{”“U[-m]”m,cr)l "

7. Concluding remarks

(1) The operator method (section 2) to construct the spectral decomposition is quite
general. If exact solutions are not possible, the algorithm gives approximations to
the eigenvalues and eigenfunctions. The method has been applied to other dynamical
systems like the 3-adic baker map, the Gauss map and the Friedrichs-Lee model [49].

{2) As the construction of the spectral decomposition is explicit, the choice of the
test functions of the rigged Hilbert space is suggested by the formal result itseif.

(3) The Koopman operator U t being a unilateral shift {36,37] is to our
knowledge the first example of operators, which do not have any kind of spectral
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theorem in Hilbert space but possess a gencralized eigenvector (30) and spectral
decomposition (31). Previous work on generalized eigenfunction expansion was
restricted to operators which admit a kind of spectral theorem in Hilbert space [50]
like self-adjoint, unitary [38-40} and normal operators [51, 52].

(4) The term coherent states for the non-polynomial eigenfunctions of the
Frobenius-Perron operator (section 5) is fully justifiable [53] in view of the
generalizations [47] of the original quantum mechanical concepts. In fact, one can
generalize the discussion of the Frobenius-Perron operators and introduce coherent
states to any unilateral or bilateral shift operator [48].

(5) For expanding maps, Tangerman [13], Pollicott [18] and Ruelle [16,17] have
studied the dependence of the spectrum of the Frobenius-Perron operator on the
smoothness of the domain, They showed that the essential spectral radius of the
Frobenius-Perron operator decreases as the smoothness of the domain increases by
a factor 6m+* determined by the smoothness m + o and expansion rates of the
maps (& being the inverse of the minimal expansion rate). The present results about
the F-adic Renyl map also provide a concrete illustration of their theory. However,
the explicit formulae for the eigenfunctions corresponding to the essential spectrum
and the spectral decomposition involving only Pollicott-Ruelle resonances cannot be
obtained within the present stage of development of the general theory by Tangerman
[13], Pollicott [18] and Ruelle [16,17].

(6) As we have seen in section 6, the essential spectral radius decreases as
the smoothness of the functions in the domain increases. This phenomenon is
easily understood from the smoothness of the non-polynomial eigenfunctions because,
when the domain of the Frobenius-Perron operator U is restricted to the space of
m-times continuously differentiable functions, the coherent cigenfunctions ¥3{x)
corresponding to eigenvalues 1/4™ < 2] < 1 are excluded. However, there exist
infinitely differentiable linear combinations of the excluded eigenfunctions associated
with isolated eigenvalues in the annulus 1/8™ < |z| < 1. These isolated eigenvalues
are just the Pollicott-Ruelle resonances. Saphir and Hasegawa [54] recently applied
our coherent states (after our personal communication) in order to give another
illustration of the dependence of the decay rates upon the smoothness of the test
functions in the special case of the dyadic (8 = 2) Renyi map.

(7) The admissible test function spaces P and £, ¢ < 27 being at least analytic,
exclude the Dirac delta functions. This means that the trajectories 6(y' — S™y), n =
0,1,2,... are excluded from the domain of the spectral decomposition (22). Formula
(22) can be used for probabilistic predictions using initial densities expandable in
terms of admissible test functions only. This remark, however, goes beyond the
prediction problem, as it also reflects the intrinsically probabilistic character of
unstable dynamical systems.

The spectral decomposition (22) has, moreover, the property that the dynamical
properties are reflected in the spectrum because the ejgenvalues are the powers of
the Lyapounov time.
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Appendix, The matrix elements of C, and D,

Because both U; and C, are triangular matrices without diagonal parts, the
equation (14a) for the matrix elements C, , (16a) turns out to be

n=1
i "
C =" U U > 2 Al
mn 1/ﬁn_1/6m[ mn+!=§+1 m!cln] n_m"' ( a)
1
c 1 1 nl (Alb)

m-ln = 17gn 1/ﬁn-lvn-"” Y ey
Observing that 3*m!U, , /n! depends only on the difference n — m

1 1 =
> k™™ = f(n—m) (A2)

= (n— m)! gn-m+l e

m!
wr?" Una

one can rewrite (Ala) as

ml 1 il i
T Ca = Gz [fn —m) + X fu- m) iG] (A3

From (Alb) and (A3), one find that n!C,, . /m! depends only on the difference

n — m and thus we can set

m!
;’—Cnm =C(n-m)

which satisfies

1 r=~m-—1
C(n—m):a—m-:n—-—l[f(n—m)+ g C(n—m-—l)f(l)]

n—mz22 (Ad)
C1) = -3 = {251

As the second term of (Ad) is a form of convolution, the sum equation (A4) can be
solved through the generating function C'(z) of C(n):

o0

C(z)=3_2"C(n).

n=1
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Indeed, multiplying 2™~™(1— 8%~™) by (A4) and summing it up with respect to
n — m from 1 to co, we obtain

C(2/8) - C(2) = f(2) + C(2)f(2) (A5)
with
(s Sy = LSS ’”/f@ S L it S
f()—:{,l f(n)"ﬁkzz:z:: =L D= gy

Equation (A5) leads to the following functional equation for h(z) = (e* — 1)(1 +
C(z))/=

h(z) = h(z/B).

Thus, h(2) is a Oth-order homogeneous function, i.e. constant:

e =1
h =
(=)= —

=1,

Thersefore,

1+é(~)_1+zz (A6)

n=l -1
As zf(¢” — 1) is the generating function of the Bernoulli numbers (17), we obtain

C(n):-i—’!‘.

This completes the derivation of (164).

The equation (14b) for D,, for the matrix elements D, (16b) takes the form

nm

'n'_! 1 m-7 _ m =i —_
Dam = ey 877 n)+1_§16 ftm =07 D,
m>n+2 (ATa)
Mo ==L g ATb
m+ Dl n,n+1—-ﬁ—__—lﬁf( ). (ATb)

Thus, as in the case of C,, n!D,_ . /m! depends only on the difference m — n:

nl .
S {Bal Dol = D(m = n)

which satisfies

m-n—1
Dim—-n)= —-—%:-l-[ﬁm‘“f(mwn)-}- Z ,Bm““"f(m—n—l)D(E)] .
=1

g
(A8)
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As in the case of C,, (A8) can be solved through the generating function

(o]

D(z)=Y"2"D(n).

n=1

Multiplying 2™~ "(3™~™ — 1) by (A8) and summing it up with respect to m —n, we
obtain

D(Bz) - D(2) = G(2) + G(2) D(z) (A9)
with
) Bz _1
G(2)= Y "B f(n) = s — 1.
nz::f Be = 1)

Equation (AS) then leads to the following functional relation for g(z) = 2z(1 4+

D(2))/(e® - 1):
g(Bz) = g(=).

Thus, g(z) is a Oth-order homogeneous function, i.e. constant:

g(z)=z[%@=g(0)=l
which leads to
kad n _eF-1 > z®
1+1?(z)=1+nz=1z D(n)._—-z—_nzﬂm. (A10)

Therefore, the non-vanishing matrix ¢lements of D_ are given by (16b).
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