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Abstract. We mnstmct a generalized spectral demmposilion of the FrobeniuoPerron 
operator of lhe general 8-adic Renyi map using a general iterative operator method 
applicable in principle to any mixing dynamical system. We a h  Biplicitly define 
appropriate rigged Hilbert spaces, which provide mathematical meaning to h e  formally 
obtained spectral decomposition. ?he explicit mnstruclion of the eigenvalues and 
eigenvectors allows us to show Il iat h e  essential spectral radius of the Frobenius- 
Perron operator decreases as the smoothness of the domain increases The reason for 
the change of the spectrum from the unit disk lo isolated eigenvalues, is the existeoce of 
mherent states of the FrobeniuoPerron operator, which are not infinitely differentiable. 

1. Introduction 

Complex spectral decompositions for large PoincarC non-integrable dynamical systems 
have been recently constructed by the Brussels-Austin groups [1,2]. The resonances 
appear as complex eigenvalues of the evolution generator. The solution algorithm 
of the eigenvalue problem defines an extension of the operator beyond the Hilbert 
space. The extension acquires meaning in a suitable [3] rigged Hilbert space [4]. 

Eigenfunctions of the Frobenius-Perron operator [5] of the baker [6] and the 
dyadic Renyi map [7] have also been recently obtained by Hasegawa and Saphir [6]. 
Gaspard [SI also constructed eigenfunctions for the general Renyi map through 
Euler's summation formula. The corresponding eigenvalues are just the Pollicott- 
Ruelle resonances [SlS]. The Pollicott-Ruelle resonances of a dynamical system are 
the complex poles of the meromorphic extension of the power spectrum (the Fourier 
transform of the correlation function). It is straightfonvard to see [19] that these poles 
are the logarithms of complex eigenvalues of the Frobenius-Perron operator of the 
dynamical system. The existence of Pollicott-Ruelle resonances has so far been shown 
only for axiom-A systems and the actual construction depends upon the possibility 
to construct Markov partitions [12]. For non-axiom-A systems, 'numerical studies 
are often the only accessible tool of investigation' [20]. The resonances of 'chaotic' 
systems may also be calculated if the unstable periodic orbits are hown [21-251. In 
any case there is no systematic method to construct the associated eigenfunctions 
and thus obtain a spectral decomposition of the Frobenius-Perron operator. Such 
a decomposition effectively answers directly all questions [I I] concerning the decay 
properties (exponential or not) of the correlation functions, as well as the analyticity 
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properties of the power spectra. Furthermore, the spectral decomposition of the 
Frobenius-Perron operator amounts to an effective solution of the prediction problem 
in terms of densities within the test function space. 

In this paper, we construct a generalized spectral decomposition of the Frobenius- 
Perron operator of the 0-adic Renyi map using a general algorithmic method [26]. 
This is only one example illustrating the proposed method which we expect 
to be applicable to any mixing dynamical system, as it is based on iterative 
solutions of operator equations. The origin of the method is the subdynamics 
decomposition of large Poincark non-integrable dynamical systems [1,2,27-29]. We 
also explicitly define (section 4) suitable rigged Hilbert space structures, which 
provide a mathematical meaning to the formally obtained spectral decomposition. 
Non-polynomial eigenfunctions of the Frobenius-Perron operator are discussed in 
section 5. These eigenfunctions may also be seen as coherent states of the Frobenius- 
Perron operator. In section 6, we show how the spectral propcrties of the Frobenius- 
Perron operator of the p-adic Renyi maps depend upon the smoothness of the 
domain. The spectrum of the Frobenius-Perron operator changes from the whole 
unit djsk to the isolated eigenvalues present in the spectral decomposition because 
the essential spectral radius of the Frobenius-Perron operator decreases as the 
smoothness of the domain increases. 

The p-adic Renyi map S on the interval [0, 1) is the multiplication, modulo 1, by 
the integer p 2 2 

I Antoniou and S Tasaki 

s : [O, 1) 3 [O, 1) : z H Sr = pr (mod 1 ) .  (1) 

The Renyi maps arise in the P-adic digital representation of any number x E [0, 1). 
The forward iterations of the Renyi map define a cascade which preserves the 

Lebesgue measure of [0,1). Renyi showed [30] that the Lebesgue measure is the 
only invariant measure, which means that the dynamical system is ergodic. Moreover, 
Rokhlin showed that the Renyi systems are highly unstable exact dynamical systems 
[31,5], with positive Kolmogorov-Sinai entropy. Nowadays Renyi maps are considered 
to be the simplest models for ‘chaos’. 

The probability densities p( I) evolve according to the Frobenius-Perron operator 
U [SI: 

The Frobenius-Perron operator is partial isometry on the Hilbert space L2 of square- 
integrable densities over the unit interval. The Frobenius-Perron operator is the 
adjoint of the isometric Koopman operator U t :  

2. The spectral decomposition algorithm 

The systematic method we use to obtain spectral decompositions of linear operators 
is a continuation of previous work done by the Brussels-Austin groups. The key 
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idea is the construction of an intermediate operator 0 which is intertwined with the 
operator U: 

U n  = a20 or U = non-’. (4) 

The intertwining relation (4) was obtained by Prigogine et a1 [27] and George [B]. 
Recently, Petrosky and Prigogine [2] pointed out that the intertwining relation can 
be used for the construction of the spectral decomposition of the Liouville operator. 
The method as reformulated by us [26] may also be considered as a generalization of 
the partitioning technique of matrices and of the intertwining wave operator method 
of scattering theoly. 

The intermediate operator 0 is decomposable with respect to a complete family 
of projectors P, constructed from a suitably chosen biorthonormal system /yn), (G,J. 
In the decomposition of the operator U into the diagonal U,, and the non-diagonal 
part U,, 

R Y 

where w y  labels the identical diagonal elements (pn lUlyp,) (degenerate eigenvalues) 
of U,, and P, is the U,-eigenprojector (v = n if there is no degeneracy). After 
constructing the spectral decomposition of 0, the intertwining operator R provides 
the spectral decomposition of the operator U. 

The intermediate operator 0 as well as the similarity operator R are obtained 1261 
from the creation and destruction operators C, and D,: 

n C(P” + C,) 
Y 

R-’ c ( P y  + D,C,)-’(P, + D , ) .  (76 ) 
Y 

The creation and destruction operators C,, and D ,  are constructed iteratively as 
solutions of the nonlinear equations for the components P,C, and D,P,, (v # p): 

[U”3P,CV1- = (P,C” - P,)U,(P” + CUI 
P”>RP,I- = (P” + D”)U,(P,  - D J , )  

(W 
(86) 

or 
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If there is resonance we use the time-ordering boundary condition or regularization 
rule [26]. However, this case does not arise here, so the operators C, and D, are 
obtained from the equations 

Let us remark that (8)-(10) are a nonlinear generalization of the Lippmann- 
Schwinger equations for the Moller wave operators of scattering and may provide 
non-unitary intertwining operators even if the scattering asymptotic condition [32] 
between U, and U fails. 

The algorithm for the construction of spectral decomposition of the operator U 
is the following: 

(i) Choose a convenient biorthonormal system Iq,,), (Fnl and decompose the 
operator U into the diagonal part U, and the non-diagonal part or perturbation U, 
(equation (5)). 

(ii) Construct the creation and destruction operators C, and D, iteratively as 
solutions of the equations (lo), starting with Cl1 = DF1 = 0. 

(iu) Construct the intermediate operator 0 from (6) and find the spectral 
decomposition of 0 by solving the eigenvalue problem in each P, subspace. As 
0 is not Hermitian, we expect that 0 may have a generalized Jordan decomposition 
into a diagonal part and a weighted shift [26]. 

(iv) Obtain the spectral decomposition of U from the spectral decomposition of 
0 using the similarity R (equations (4) and (7)). 

3. Spectral decomposition of the Frobenius-Perron operator of the Renyi map 

We shall construct a spectral decomposition of the Frobenius-Perron operator (2) 
following the algorithm of the previous section. 

(i) As the monomials xn are eigenvectors of the dilatation operator V f ( x )  = 
~ ( P x ) ,  we choose 

lip,) = In and 

as the initial biorthonormal system. 
functions 

This system gives the nylor expansion of analytic 

The biorthonormality is straightforward: 
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The matrix elements of the Frobenius-Perron operator with respect to the 
bionhonormal system Ivp,) and (@,I are 

Indeed, 

The Frobenius-Perron operator is represented, therefore, as an upper triangular 
matrix with respect to the biorthonormal system Ipn) and (@,I: 

with P, = [pn)(@nl = P, as there is no degeneracy in U,,. 
(ii) It is a general property [26] of (upper) triangular decompositions that 

the corresponding creation and destruction operators C, and D, are also upper 
triangular operators. Furthermore, the nonlinear operator equations (10) for C, 
and D, become linear and they have the form of LippmannSchwinger equations of 
scattering [32]: 

In our case, of course, w, = l/pn, n = 0,1,2,. . . . The triangular form of C, and 
Dn follows from (10) by induction. For the operator C, 

is upper triangular without diagonal parts because U ,  is also upper triangular. 
Suppose that P, IC 2 1 is upper triangular without diagonal parts. Then 

is also upper triangular without diagonal parts because it is the product of three 
upper triangular operators without diagonal parts. 

The proof for the operator D, is the same. 



78 I Anfoniou and S %saki 

The simplification (14) follows immediately from the lemma 

P,U1(PntCn)= ( P n t D , ) U , P , = 0 .  

Lemma (15) follows from the triangular property of U, and C,: 

Pn U,(Pn t Cn) = P,U,P, t P,U,Cn = 0 t PnL, Pn, cn = 0 
n' 

because PnU, Pn, = 0 for n 2 n' and Pn, C, = 0 for n' 2 n. 
The proof for D, is the same. 
From (14) we obtain (see appendix) the matrix elements of C,, and D,: 

for m 2 n 
m! 

(166) 
for m > n 

D,, (GnlDnlpm) = { n!(m - n t I)!  

B,,,-n are the Bernoulli numbers, defined by the generating function 

0 for m 5 n .  

m -- - E z 
e" - 1 

n=U 

(iii) For triangular operators the intermediate operator 0 is identical with the 
diagonal part of U, U. [26], namely 

This follows straightfonvardly from (6) and the lemma (15). 

simple form [26]: 
(iv) For triangular operators, the similarity operators R and R-I have also a 

These formulae follow from (7) and the lemma 

D, cn = o .  (20) 

This lemma follows hom triangular property of C, and D, 

DnCn = ~ P n D n P n t P n , C n P n  = O  
.' 
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because P,DnPn, = 0 for n 2 n' and Pa, Cn P, = 0 for n' 2 n. 

(&I of 0 and the operators R, R-I. The right eigenvectors of U are 
The right and left eigenvectors of U are obtained from the eigenvectors 1pn), 

Bn(x) is the ndegree Bernoulli polynomial defined by the generating function 
133, $91 

Formula (21) gives the relation between the Bernoulli polynomials and Bernoulli 
numbers: Bn(0) = B,. 

The left eigenvectors of U are 

((11 n=O 

I 

(B,, . 
The left eigenvectors (BnI are meaningful as antilinear functionals acting on analytic 
test functions only. 

The spectral decomposition of U is therefore 

The orthonormality of the system /Bn) and (BnI follows immediately, while the 
completeness relation is just the Euler-MacLaurin summation formula for the 
Bemoulli polynomials [33, $91 
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The fact that the Bernoulli polynomials are eigenfunctions of the Frobenius- 
Perron operator of the Renyi map also follows immediately from the well known but 
not frequently quoted formula (34, p 284, as an exercise] 

This fact was 'rediscovered' by Hasegawa and Saphir [6,7 and by Gaspard [SI. 
They also point out that the eigenvalues corresponding to the Bernoulli polynomials 
coincide with the Pollicott-Ruelle resonances. 

The Bernoulli polynomials are the only polynomial eigenfunctions as any 
polynomial can be uniquely expressed as a h e a r  combination of the Bernoulli 
polynomials. 

4. The meaning of the spectral decomposition of the Frubenius-Perron operator 

The spectral decomposition (22) of U ,  constructed previously, has no meaning in the 
Hilbert space Lz as the derivatives 6( "J ( r )  of Dirac's delta function appear as left 
eigenvectors of U .  The left eigenvectors [35, p 291 of an operator U are eigenvectors 
of its adjoint Ut corresponding to the complex conjugate eigenvalue 

Ut l f )  = . ' I f ) .  (26) 

l=ollowing the standard convention of Dirac 1351, I ) denotes linear functionals, while 
( I denotes antilinear functionals: 

(glciA -t ~ 2 4 2 )  = ci(gl+i) -t cz(g142) (~141 f ~ 2 4 2 1 ~ )  = Ci(4ib) f 4(4zIg)  

Furthermore, as the Renyi transformations are exact [31,5] dynamical systems, 
the Koopman operator U t  is a unilateral shift of infinite multiplicity. Unilateral 
shifts t36.371, called semi-unitary operators by Rokhlin [31], do not admit a spectral 
decomposition in Hilbert space, as they cannot be decomposed in any way at all. In 
fact, the undecomposability is a necessary and sufficient condition for an isometry to 
be a unilateral shift [37, ch 7, p 110]. 

A natural way to give meaning to formal eigenvectors of operators which do not 
admit eigenvectors in Hilbert space, like the Koopman operator U t ,  is to extend 
the operator to a suitable rigged Hilbert space, e.g. 0 c Lz c @t  [38, ch I]. .I,t 
is the space of continuous linear functionals on the properly chosen test function 
space a. In this way, the spectral decomposition (22) can be understood as a natural 
generalization of the Gelfand [38, ch I, 39, ch IV]-Maurin [40] theory of generalized 
spectral decompositions of self-adjoint operators with continuous spectrum. 
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As shown by Boas [43, ch 21, condition (29) is necessary and sulficient for the function 
4(z) to be an entire function of exponential type c with 0 < e < 27r. 

The fact that any entire function of exponential type less than 2a has a convergent 
Euler-MacLaurin expansion (23) is mentioned by Boas and Buck [33, $91. It is clear 
that we have therefore the whole family &c, 0 < c < 2a of test function spaces. Each 
space E, is a Banach space with norm [42, ch 221 

I Anroniou and S Tasaki 

The norm topology of each &c is stronger than the Hilbert space topology [42, ch U]. 
Each space C, is dense in the Hilbert space Lz as &c includes the polynomial space 'P. 

Each test space Ec is stable under the Frobenius-Perron operator U. Indeed, for 
every function 4( z) in &c 

The last inequality implies that U &  is of exponential type c l @ .  The stability of each 
Ec follows from the nesting property 142, ch 221 &c c Ec, if c < c'. The nuclear space 
P and the family of Banach spaces Ec form reasonable test function spaces providing 
increasingly tighter riggings, which give meaning to the spectral decomposition (22). 

AE discussed in the beginning of this section, the Koopman operator U t  is 
a unilateral shift. As unilateral shifts are not decomposable, they cannot have 
eigenfunctions in the Hilbert space. However, the extended Koopman operator has 
generalized eigenvectors 

(30) 
1 -  utIBn) = ~T;;IBJ 

and generalized spectral decomposition 

This is, to our knowledge, the first example of non-normal operators which do not 
admit a spectral decomposition in the Hilbert space but possess a generalized spectral 
decomposition. 

5. Non-polynomial eigenfunctions of the Frohenius-Perron operator 

It is straightforward to see that the Frobenius-Perron operator U has also the non- 
polynomial eigenfunctions: 

n 
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where 2, E {s E 2 : s / p  $! 2) and 

si(=) E exp(2?rispnz) n = 0,1,2,. . . . (33) 

It is also straightfonvard to see that the functions {g:(r)) satisfy the property 

Equation (34) means that the operator U is the adjoint unilateral shift in the  
orthogonal complement of constant functions L2 e C and that the set {g;(z)}sEZ, 
is a basis of the wandering generating subspace [36] of the shift. As the set {g;(z)} 
is essentially the Fourier basis of Lz e C, it forms an orthonormal basis of the space 
Lz e c. 

The eigenfunctions +:(x) have the following properties: 
(i) Although the family {+;(z)} is an overcomplete nonorthonormal set in L'eC, 

for any eigenvalue z with (z I  < 1, each subfamily { + ; ( z ) } ~ ~ ~ ~  is an orthonormal 
basis for the z-eigenspace. In fact, if $=(z) = Cz=uc; g;(z) E Lz is an 
eigenfunction of U with eigenvalue I, 

U tlr2(Z) = z+,(z) 

equation (34) gives 

= zc; = . . . = z n  s ClJ 

and thus 
m 

$,(XI = Zn cu" g;(s) = .U"+:(.). 
SEZ, n=O SEZ, 

(ii) The eigenfunctions +,"(I) are m-times continuously differentiable on (0. 1) 
for a non-negative integer m satisfying 

-In IzI -In IzI ->m>--  1 .  
In P In P 

Indeed, the term-by-term uth derivative of (32) is 

(35) 

Let 0 5 U 5 m; then because of Ig;(z)I = 1 and IzIp" 5 lzlp" < 1 by (35), the 
series (36) converges absolutely and uniformly on [0,1]. Thus, $;(I) is m-times 
continuously differentiable and its vth derivative, U = 1,2, . . . m, is given by (36). 

(ii) Moreover, the mth derivative +itm)(x) of the eigenfunction $;(z) is Holder 
continuous of exponent a: 0 < a < - In( Izp"I)/  In p. The proof follows from the 
inequality 

lexp(ir) - 11 5 ~ ' - * l z / ~  ( z  E IZ o < a < 1). (37) 



m 

5 2m+'(nlsl)m+* C [ l Z l P " + " ] *  < + W .  

n=O 

(iv) One can express the Bernoulli polynomials B,(z) in terms of the 
eigenfunctions +;(z) by rearranging the Fourier expansions of the Bernoulli 
polynomials [34, p 2841: 

(v) The eigenfunctions +;(z) for 1 > I+/ 2 I /p  can be expressed in terms of the 
Weierstrass functions as follows: 

m m 

+;(z) = zncos(2npnsx)  + i zn s in(2npns+) .  (39) 
n=U n=O 

Such functions are called complex Weierstrass functions by Mandelbrot [44, p 3881. 
The fact that the Weierstrass functions appear as eigenfunctions of the Frobenius- 
Perron operator has also been noticed by Hata [45]. A pictorial representation of 
these functions is presented in figures 1 and 2. 

These curves are fractal sets. Indeed, by using the Besicovitch-Ursell 
inequality [46], it is easy to show that the Hausdorff dimension D, of the graphs 
of Re+;(z) and Im $;(I) satisfies 

(vi) Let us remark before cIosing this section that the behaviour of the 
eigenfunctions +;( z) of the Frobenius-Perron operator U resembles the behaviour 
of the coherent states. Coherent states are eigenfunctions of the annihilation 
operator [47, which is an unbounded adjoint weighted shift [36]. This is, in fact, 
a special case of a general construction of coherent states for shift operators [48]. 

Figure 1. "he graph of y = Re $; ,2(z)  in [he case of p = Z 
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Figure 2. ?he graph of y = Re *;,,(E) in the case of p = 2 

6. Domain dependence of the spectrum of the Frobenius-Perron operator 

As the Frobenius-Perron operator U is the adjoint shift, the spectrum of U on the 
Hilbert space L2 e C is the unit disk [36, Problem 821. How does the spectrum of 
U change to isolated eigenvalues in the domain P or Ec, 0 < c < 2?r? In order 
to answer this question, we shall study the spectral radii of the restrictions of U in 
the intermediate dense domains Cm>" of all m-times continuously differentiable 
functions on [0,1] whose mth derivative is Holder-continuous with exponent a, 
0 < a 5 1. It is obvious that P c &c c Ec, c Cm+ c Cm'ze' c Lz  with 
m i- a < m' i- a' and c < e'. 

The difference of the Frobenius-Perron operator U from the spectral 
decomposition (22) is expressed by the operators 

m = 1.2,. . . . (41) 

Each operator Urml is well-defined on Cm@ m = 1 , 2 , .  . . and one can show that: 
(i) The range of Urml is the subspace C?@ of all m-times continuously 

differentiable functions on [O, 11 whose m t h  derivative is Holder-continuous with 
exponent 0 < (Y 5 1 and all derivatives are periodic, Le. q5[y)(0) = 4 ( w ) ( l )  
(v = 0, .  . . , m  - 1). 

(ii) The operator Urml has spectrum in the closed disk IzI 5 I/pmte with 
associated eigenfunctions the non-polynomial eigenfunctions @( z) given by (32). 
This means that the spectral radius of the opewtor Urml becomes smaller as the 
smoothness (m +- a) increases. When m - 03, the spectral radius approaches 
zero. This implies that, as m -+ CO, the Frobenius-Perron operator U is 'effectively' 
approximated by the spectral decomposition (22) which is associated with isolated 
eigenvalues and analytic functions. 

Before going to the proof, we remind the reader that the spaces CmvQ and C?+ 
are Banach spaces with norms 
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where ~ ~ + ( j ) ~ ~ ~  = 

I Antoniou and S Tasaki 

l+u)(z)l the supremum norm and 

the minimum a-Holder constant. 

Proof of (i) and (ii). The periodicity condition (U[ml$)(v)(l) = (Ur, l~)(y)(0)  
(U = 0, . . . , m - 1) for (i) follows straightforwardly for all 4 E C",". 

Before going to the proof of (ii) for U[,,,], m = 1,2, .  . ., we study the operator 
Urq defined by 

1 

u[ul+(z) E U+(*) - dc'$(z') (44) 

on the space Cp",, of periodic functions. 
The spectral radius of Ulq is 

Proofofformula (45). We first obsene that the spectral radius R(Uful) is bounded 
from below by l/p"*, as for any : within the open disk IzI < l/pmta the 
eigenfunction +;(T) is in the space CT9*. We show also that R(Ulul) 5 l/p"* by 
using the well-known formula for the spectral radius [36, Problem SS] 

Since we have 

we should estimate the norms ]I( Ufi4)(j)llm, j = 0,1, . . . m, and I]( Ufi+)(m)lim. 
In order to estimate the norms, we need the following lemma: 
(iii) For all a-Holder-continuous functions g ( z ) ,  Ulqg(z) is also aHolder- 

continuous (stability of the a-Holder-continuous functions under Urq) and the 
following inequalities hold: 

(48) 

(49) 

11g11~ 

lid* 
0" 

llqu]gll* 5 p" 

ll~~[lqg1Im 5 - ' 

Proof of lemma (iii). (i) From the formula [41, p 241: 
I 

dze-z"i""g(r) = dre-2Ti'z{ g(s) - g(z t k)} (50) 
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and the m-HCilder continuity Ig(s) - g(y)/  5 llgllO1x - yl", we obtain, using (47), 

(ii) Inequality (48) as well as the stability of the a-Holder-continuous functions follow 
from 

d 1 d 4  1 d4 
dx P dx P -U["]4(r) = -U-(+) = -u[s-(x) 

dm 1 
dxn P"" 
-U1,"$(2) = -uIq%#w(x). 

Since 4(-)( x) is a-Holder-continuous, lemma (48) gives 
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Estimarion of ~ ~ ( U [ q ~ + ) ( v ) ~ ~ w  (v=O, l ,  ... ni-1) .  The function + ( E )  can be 
expanded into a Fourier series 

I Antoniou and S Tasaki 

where c; is the Fourier coefficient 

1 1 

cg = dz'gr(z')+(d) = 1 dz'exp(-2nispkz')+(z'), (55) 

Thus, from (3.4), we obtain 
m m 

u[Q]"+(z) = ci!?i-n(z) = c C s k + n g i ( z )  (56) 

l ( q q n + ) ( " Y d l  5 C ( 2 n l s l P k ) " l d + " l ~  (57) 

SEZ, k = n  s E Z ,  k=Q 

which leads to 
m 

sEZ,  k=U 

As @(z) is m-times continuously differentiable and +(")(1) = +("1(0) (0 5 v 5 
m - I), we obtain 

where the inequality (48) of lemma and the fact that b(m) is a-Holder-continuous 
have been used. Thus, since m t a - Y > 1 for 0 5 v 5 m - 1, we obtain 

where C(p) E Er=, l /n@ is Riemann's zeta function. 
By combining (54), (55) and (59), we have 

(60) 

where M is a positive constant depcnding only on m and a: 
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Thus we have 

From the previous estimations and formula (46) we obtain the desired upper bound 
for the spectral radius 

1 1 'In < [im M'ln- = -, R(U[y) = )im", l l ' [ ~ ] ~ l t m , m  - n-.x p m t a  pmta 

We can now prove that the spectral radius of Ulml is also 

A?. in the case of U["], the spectral radius R(U[,]) is bounded by l /pmta from 
below. The argument is the same as before with the observation that 

As in the case of U[q, we show that R(UIml) 5 l / p m t a .  

Estimarion of ~~U[mln+~~,,,,a. Because the range of 
on Cp"", we a n  apply (60): 

is Cpmva and Ulml = Ulul 

Therefore 

7. Concluding remarks 

(1) The operator method (section 2) to construct the spectral decomposition is quite 
general. If exact solutions are not possible, the algorithm gives approximations to 
the eigenvalues and eigenfuncuons. The method has been applied to other dynamical 
systems like the p-adic baker map, the Gauss map and the Friedrichs-Lee model [49]. 

(2) As the construction of the spectral decomposition is explicit, the choice of the 
test functions of the rigged Hilbert space is suggested by the formal result itself. 

(3) The Koopman operator U t  being a unilateral shift [36,37] is to our 
bowledge the first example of operators, which do not have any kind of spectral 
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theorem in Hilbert space but possess a generalized eigenvector (30) and spectral 
decomposition (31). Previous work on generalized eigenfunction expansion was 
restricted to operators which admit a kind of spectral theorem in Hilbert space [50] 
like self-adjoint, unitary [3830] and normal operators [SI, 521. 

(4) The term coherent states for the non-polynomial eigenfunctions of the 
Frobenius-Perron operator (section 5)  is fully justifiable [53] in view of the 
generalizations 1471 of the original quantum mechanical concepts. In fact, one can 
generalize the discussion of the Frobenius-Perron operators and introduce coherent 
states to any unilateral or bilateral shift operator [48]. 

(5) Far expanding maps, Thngerman [13], Pollicott [I81 and Ruelle [16,17] have 
studied the dependence of the spectrum of the Frobenius-Perron operator on the 
smoothness of the domain. They showed that the essential spectral radius of the 
Frobenius-Perron operator decreases as the smoothness of the domain increases by 
a factor Om+* determined by the smoothness m + a and expansion rates of the 
maps (0 being the inverse of the minimal expansion rate). The present results about 
the 0-adic Renyi map also provide a concrete illustration of their theory. However, 
the explicit formulae for the eigenfunctions corresponding to the essential spectrum 
and the spectral decomposition involving only Pollicott-Ruelle resonances cannot be 
obtained within the present stage of development of the general theory by llngerman 
[13], Pollicott [18] and Ruelle [IG, 271. 

(6) As we have seen in section 6, the essential spectral radius decreases as 
the smoothness of the functions in the domain increases. This phenomenon is 
easily understood from the smoothness of the non-polynomial eigenfunctions because, 
when the domain of the Frobenius-Perron operator U is restricted to the space of 
m-times continuously differentiable functions, the coherent eigenfunctions $;( 2) 

corresponding to eigenvalues l/pm 5 121 < 1 are excluded. However, there exist 
infinitely differentiable linear combinations of the excluded eigenfunctions associated 
with isolated eigenvalues in the annulus I/@" 5 IzI < 1. These isolated eigenvalues 
are just the Pollicott-Ruelle resonances. Saphir and Hasegawa [54] recently applied 
our coherent states (after our personal communication) in order to give another 
illustration of the dependence of the decay rates upon the smoothness of the test 
functions in the special case of the dyadic (p = 2) Renyi map. 

(7) The admissible test function spaces P and &,, c < 2rr being at least analytic, 
exclude the Dirae delta functions. This means that the trajectories S(y'- Sny), n = 
0,1,2,. . . are excluded from the domain of the spectral decomposition (22). Formula 
(22) can be used for probabilistic predictions using initial densities expandable in 
terms of admissible test functions only. This remark however, goes beyond the 
prediction problem, as it also reflects the intrinsically probabilistic character of 
unstable dynamical systems. 
The spectral decomposition (22) has, moreover, the property that the dynamical 
properties are reflected in the spectrum because the eigenvalues are the powers of 
the Lyapounov time. 
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Appendix. The matrix elements of C, and D, 

Because both U, and Cn are triangular matrices without diagonal pans, the 
equation (14) for the matrix elements C,, (16a) turns out to be 

Observing that Onm!Umn/n! depends only on the difference n - m 

0-1 
~ z ~ - ~  z f ( n  - m) (A-2) 

m! 1 
n! ( n  - m)!  p"-m+l 
-0" U,, = 

k = l  

one can rewrite (Ala) as 

From (Alb) and (A3), one find that n!C,,,,/m! depends only on the difference 
n - m and thus we can set 

m! -C,,, 5 C ( n  - nz) n! 

which satisfies 

n - n z 2 2  

1 C(1) =- -=  -.U]). 
2 1-0 

As the second term of (A4) is a form of convolution, the sum equation (A4) can be 
solved through the generating function e ( z )  of C(n): 

m 

& ( z )  z n C ( n ) .  
n=l 
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Indeed, multiplying P-'"(l-  f i n - " )  by (A4) and summing it up with respect to 
n - m from 1 to CO, we obtain 

4 z l P )  - C ( z )  = f ( z )  + Qz)f(z) (U) 

with 

Equation (A5) leads to the following functional equation for h ( z )  E (ez - 1)(1 + 
6 ( 3 ) ) / z :  

Nz) = h ( z / P ) .  

Thus, h( t) is a 0th-order homogeneous function, i.e. constant: 

e2 - 1 
h ( z ) =  - [ l + C ( z ) l = h ( 0 ) = 1 .  

Z 

Therefore, 

As z / (ez  - 1) is the generating function of the Bernoulli numbers (17), we obtain 

B n  C ( n )  = -. 
n! 

This completes the derivation of ( 1 6 ~ ) .  
The equation (146) for D ,  for the matrix elements D,,,, (16b) takes the form 
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As in the case of C,,, (AS) can be solved through the generating function 

Multiplying z " ' - " ( @ ~ - ~  - 1) by (AS) and summing it up with respect to m - n, we 
obtain 

with 

Equation (As) then leads to the following functional relation for g ( z )  
D(z)) / (ez  -1): 

z(1 + 

d P Z )  = d z ) .  

Thus, g ( z )  is a 0th-order homogeneous function, i.e. constant: 

which leads to 

Therefore, the non-vanishing matrix elements of D ,  are given by (166). 
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